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An analytical theory of a high-pressure gas discharge between two metal electrodes covered with an 
insulator is presented. The theory is applicable when the voltage applied to the gap between 
electrodes only slightly exceeds the breakdown voltage. Analytic expressions for the electric field, 
electron and ion current densities, as a function of time and space, and an analysis of the stability 
of the discharge are given. A detailed discussion of the role of metastables in the discharge dynamics 
is included. The discharge in a plasma display cell is used as an example to demonstrate the utility 
of the theory. Q 1995 American Institute of Physics. 

1. INTRODUCTION 

The dynamics of a high-pressure (>lOO Torr) ac dis- 
charge was investigated earlier both experimentally and nu- 
merically in a number of papers.lw5 They included numerical 
analysis of an ac discharge in pure neon3 and in a Ne+O.l% 
Ar mixture.” A rather good understanding of the mechanism 
of such a discharge has been achieved. It was identified as 
the Townsend discharge with external parameters influenced 
by the discharge and varying during the discharge. Numeri- 
cal analysis showed good agreement with experiment. How- 
ever, there is still no analytical theory which combines vari- 
ous parameters of a system in a few scaling laws. Such a 
theory should be able to predict characteristics of the dis- 
charge such as the space distributions and time dependence 
of the electric field and electron current during the discharge, 
excitation rates, luminosity in visible and UV spectra as a 
function of time, gas composition, and pressure, geometry, 
applied voltage, etc. 

The general analysis of this problem is very difficult 
even in a 1D geometry, especially for mixtures. As it is an 
inherently transient discharge, the electric field rapidly 
changes in time and space. The dynamics of the discharge 
depends on the gas composition in the mixture and popula- 
tion of excited species which at high pressures include not 
only metastables but also resonantly excited atoms and ex- 
cited molecules. Ionization and excitation rates for every 
species depend on the whole gas composition and on the 
space coordinate near electrodes since the electron distribu- 
tion function in these regions is strongly affected by the vi- 
cinity of the boundaries. Obviously, the problem in many 
aspects requires only kinetic consideration. 

However, despite all the aforementioned difficulties, one 
can develop a rather advanced and useful analytical theory if 
one considers only situations when the applied voltage only 
slightly exceeds the breakdown voltage. Indeed, in this case 
the current never reaches high values, and the distortions of 
the electric field due to space charges are small, so one can 
neglect them (later we will discuss this subject in more de- 
tail). The magnitude of the eiectric field changes slowly in 
time and its gradient is small. If one also assumes that the 
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distance between the electrodes is significantly larger than 
electron mean free path and the distance at which electrons 
gain energy comparable to the ionization energy, then one 
can neglect the spatial dependence in the electron distribu- 
tion function and ionization and excitation rates related to the 
influence of the boundaries. h-r this case the kinetic consid- 
eration of electrons would be necessary only for calculating 
electron driven rates and the effective secondary emission 
coefficient. 

In the current paper we limit our consideration to an ac 
discharge in a single-component noble gas. We develop a 
relatively simple analytical theory which provides insightful 
understanding of the dynamics of the ac discharge and the 
role of different parameters. We show that the dynamics of 
the discharge depends on the difference between the applied 
and breakdown voltages rather than on the applied voltage 
itself and obtain simple analytical formulas describing the 
dynamics in terms of the first and second Townsend coeffi- 
cients and geometric parameters. In the forthcoming publica- 
tion we will extend our theory to derive analytical expres- 
sions for the excitation and ionization rates in a two- 
component gas mixture valid in a wide range of partial 
pressures of different components and consider the dynamic 
of the discharge and the light output from the cell.~ 

Without restricting ourselves to any specific device, for 
all estimations we shall use the values of parameters (gas 
pressure, applied voltage, or the distance between electrodes) 
typical to current plasma display panels (pdp) as they are the 
most promising-application of an ac discharge. That is, we 
consider gas pressure about -0.5 atm and a gap size about 
- 10m2 cm; thickness of the dielectric is usually about - 10v3 
cm. 

Let us consider two parallel electrodes covered with an 
insulating material separated by a small gap. The gap is filled 
with a gas at a relatively high pressure. We shall refer to such 
a device as a “pdp” or “ac” cell. Some low level of ioniza- 
tion of the gas is provided initially by an external source. The 
distance L between electrodes is much larger than electron 
mean free path in the gas (h,). When an electric field is 
applied to the electrodes the electrons and ions move toward 
appropriate electrodes. Ions reaching the cathode may pro- 
duce secondary electrons when they strike the surface of the 
cathode. If the electric field is high enough, these electrons 
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on their way toward the anode may produce additional elec- 
trons and ions by ionization cascades. If the number of ions 
produced in the cascade, initiated by any one of secondary 
electrons from the surface, exceeds the number of ions nec- 
essary to produce that one electron due to a secondary emis-- 
sion, then the current grows in time and a breakdown occurs. 
Since the electrodes are covered with an insulator, a charge 
builds up on them and affects the electric field in the gap. As 
the field drops the ionization cascade becomes weak, and if 
the number of secondaries becomes less than in the previous 
pulse, the current decreases and the discharge self- 
extinguishes. Note that in our case the discharge extinguishes 
itself automatically, and does not require a change in the 
applied voltage as in an rf discharge or in a dc-discharge 
devices. 

The property of a cell to accumulate and maintain a 
charge makes it possible to use it as both a light source and 
a memory element and is used in plasma displays. If, after 
the discharge has self-extinguished, one applies a voltage 
opposite in polarity to the previous one, the discharge may 
start again even if the applied voltage is less than the break- 
down voltage. Obviously, the condition for starting a new 
discharge is that the applied voltage plus the voltage due to 
the stored charge exceeds the breakdown voltage. 

In this paper, as we already mentioned, we consider a 
single discharge pulse in a monatomic gas when the applied 
voltage only slightly exceeds the breakdown voltage. To be 
more specific, let us recall the Townsend breakdown 
condition6 

A=y(eaL- l)- 1 =O, (1) 

where a and y are the first and the second Townsend coeffi- 
cients and L is the distance between electrodes. The dis- 
charge current grows when A is positive and decreases when 
A is negative. In this paper we assume that A is initially 
positive and much less than unity: 

0-C y(eaL- l)-141. (2) 

Using a hydrodynamic approximation we find an analytic 
expression for the Z-V curve and the temporal and space 
characteristics of a discharge, and investigate its stability 
when a periodic potential is applied to the electrodes. 

In Sec. II we give the set of equations which describe the 
pdp cell. In Sec. III we solve these equations and find the 
spatial distribution of electron and ion currents as functions 
of external parameters. Using these solutions in Sec. IV we 
obtain the I- V characteristic curve and the temporal depen- 
dence of the current (the pulse shape). In Sec. V we investi- 
gate the stability of the discharge when an alternating square- 
wave voltage is applied to a cell. We then show that near the 
breakdown threshold the high-pressure discharge is unstable. 
In Sec. VI we give a qualitative discussion of the role of 
metastables and in Sec. VII we summarize the results ob- 
tained. 

II. BASIC EQUATIONS 

Consider a gas discharge cell consisting of two parallel 
flat electrodes covered with a thin layer of dielectric material. 
The z axis is directed from the anode toward the cathode, as 

-+d- -d- 

FIG. 1. A schematic diagram of a simple pdp cell. 

shown in Fig. 1. We denote the dielectric constant of the film 
as E, considering it as constant within the layer and assume 
that the thickness of the coating d is much less than the 
distance between electrodes L(deL). 

Let j,(z,t) and ji(z,tj be the electron and ion current 
densities and n,,, and u,,~ be their number densities and drift 
velocities. Drift velocities and the electric field have only 
one component-parallel to the z axis. According to our 
choice of the direction of the z axis, we have E,= E, 
UizUf~=IUil>Op U,=U,z= -Iu,l<O. The set of equations 
which describes our problem is’ 

hv, 
-= - L~(E)~,~, , dZ 

dE?i diZiVi 

at+ 
-= -n[E)n,u,, 

dZ 

divd%~ g e(z)E=4re(ni-n,), 

Ji,e= +eff+?Ji,e 9 (6) 

Vni e 
ui,e= f Pi,eiE)Ez-Di,e ( 

% 

D. d 1.e 
= + P~,~(E)E- ni.e z ni,e 7 

where a(E) is the first Townsend coefficient, e the elemen- 
tary charge, CLi,e(E) the ion and electron mobilities, and Di,, 
the ion and electron diffusion coefficients. The signs in the 
Fq. (6) relate to ions (upper sign) and electrons (lower sign), 
respectively. Equations (3) and (4) are the continuity equa- 
tions with the source term describing ionization due to elec- 
tron impact. Equation (5) is the Poisson equation for the 
electric field. Equation (7) assumes that electrons and ions 
reach their equilibrium drift velocities on time and space 
scales which are much shorter than those characterizing the 
changing electric field, so that u,,~ are the functions of the 
local parameters-electric field and density gradients. The 
specific constraints resulted from these assumptions are de- 
rived in Appendix A. 
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Since the diffusion coefficient is proportional to an av- 
erage energy of a particle, it is very small for ions because 
their energy can not differ significantly from a gas tempera- 
ture in a high-density gas. Thus we neglect the diffusion of 
ions (Di=O) and have 

Ui=PiiElE2 (8) 

so the ion current is determined only by the electric field. 
The boundary conditions are (see Fig. 1) 

j,(L,t)=yji(L,tj, jiiO,tj=O, u(t>=uO~(t), (9) 

where 0(t) is a step function [0(t) =0 if t<O and b'(t) = 1 if 
tZ=O] and U, is the magnitude of the applied voltage. 

We choose the following initial conditions: 

It,,iiZ,0)=n09 0gt=oj=-0-c(t=0j=0-.9, 00) 
where a,(t)=r(L,t) and a,(t)=a(O,t) are the charges on 
the cathode and anode, respectively. Note that we consider a 
situation when all changes of the electric field during a dis- 
charge happened due to the discharge rather than changes of 
the external potential. The latter is correct if the time length 
of the discharge pulse is shorter than the half-period of the 
applied voltage, which in a pdp is typically about 5-10 ps. 
The result will justify this assumption. 

III. THE DISTRIBUTIONS OF ELECTRON AND ION 
CURRENTS 

We consider evolution times much longer than the elec- 
tron drift time (Q-S +rC- L/v, j . Thus we can neglect the term 
containing the time derivative in Eq. (3) and one may rewrite 
Eq. (3) in the form 

c;j,(zJ) 
~ = - dqj,(z,t), dz iI0 

which has the solution 

j,(r,tj=j,(L.t)exp( JzLa(Ej&). (12) 

As was mentioned earlier, we assume that the voltage 
applied across the gap only slightly exceeds the breakdown 
voltage. In this case, according to Fqs. (5) and (6), the 
charges do not disturb the initial electric field in the gap and 
the solution of the Poisson equation (5) for the electric field 
in the gap with the boundary conditions (9) is straightfor- 
ward. The electric field E is uniform in the gap between the 
electrodes and depends on time due to changes in the surface 
charge: 

E(t)= (13) 

The charge densities on the electrodes can be expressed 
through the current densities near the electrodes: 

crc(t)+ao= I ~~(.L,r’)dt’-(ify) ~~i(l,tr)dt’, (14) I 

I ‘je(O.t’)df. (15) 
0 

Using the solution for the electric field [Eq. (13)] we can 
perform the integration in Eq. (12) to find the electron cur- 
rent distribution j,(z,t): 

j,(z,t)=j,(L,t)e”‘E)‘L-zj. (16) 
This solution shows that near the threshold the electron cur- 
rent has an exponential spatial dependence and always ad- 
justs itself to its value on the cathode j,(L, t). However, to 
obtain j,(L,t) we need to know the ion current on the cath- 
ode [see the first boundary condition in Eq. (9)]. 

Let us now turn to the equation for the ion current. In 
this case the time derivative cannot be neglected since the 
drift time of the ions is significantly longer than that of elec- 
trons. We rewrite Eq. (4) in terms of the ion current rather 
than the ion density. Substituting ni=jJ(eci) into Eq. (4) we 
obtain 

1 dj, djji 1 dVi 
--++--z-gji=4We. Vi dt L 

(17) 

Using Eq. (8) we can estimate terms on the left-hand side of 
Eq. (17) as jil(uiT), jilL, and (AEIE)jil(uiTj, respectively, 
where AE is the net change of the electric field throughout 
the discharge.. One can estimate the ratio A El E as 

AE Uo-Ubr --- 
E Ubr 

f W 

where lJbr is the breakdown voltage. Since the applied volt- 
age is close to the breakdown voltage, this parameter is 
small, and hence the term proportional to E=dEldt is small 
by a factor of id/( Eu ij and we neglect it. The solution of 
Eq. (17) can be easily obtained by integration along the char- 
acteristics 

ji(Z,tj= ’ I ~[t-T~(Z7Z')]j~[Z'~t-~i(Z~Z')ldZ'~ (l9j 
0 

where a(t)=a[E(t)l, and ~i(z,z’)=(z-z’j/Ui is the ion 
drift time between a point z’, where it was created to the 
point z. Note that Eq. (17) can be easily solved without ne- 
glecting the third term in the left-hand side of it. One can 
find this solution in Appendix B. 

Using the solutions Eqs. (16) and (19) and the boundary 
condition j,( L , t j = rji( L, t) , we obtain an integral equation 
for determining j,(L,t): 

I 

L 
j,(U) = Y (Y(t-z/ui)je(Lrt-z/ui)e”‘f-Z’uifz dz. 

0 
(20) 

By expanding jJL,t-zlui) in a series, 

aj,i-U) 
j,(L,t-zlui)=j,(L,t)- 7 ZlVj, 

we finally obtain a differential equation for j,(L,t): 

~.i,&t) 
-=j,(L,t)Vi 

yS4;cr(t-zlVi)e”(f-Z’Ui)Z dz- 1 
dt YS~‘Y(t-Z/vi)e”‘t-.E/Uj)zZ dz * 

fnr-l\ (‘LI 
When performing the integrals in Eq. (22) we can neglect all 
the terms containing E, (like iuiL) as we did before when 
solving the Eq. (17) (later we will discuss the validity of this 
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assumption). After this, the integrations in Eq. (22) become 
simple and we obtain 

+i,(Ltj 
-=j,(L,t)a(E)ui 

y[eacEjL- I]- 1 
at y[cu(E)L- l]eCYCEjL+ y’ 

WI 
To complete the system of differential equations for the cur- 
rent and electric field, let us differentiate Eq. (13) for the 
electric field. Using Eqs. (13)-(16) and the boundary condi- 
tion (9), we obtain 

JE 4tid 
at= 

- ~~f2d [ 1+ lly+ea(E)L]j,(L,t). (24) 

Equation (23) together with Eq. (24) and initial conditions 
(10) -complete the system for determining the time depen- 
dence of the current and electric field. 

We now show that the characteristic rise time of the 
current ?- is indeed much larger than the ion transit time 
7i=LIvi. Using Eq. (23) we can estimate the characteristic 
current rise time by assuming that the electric field during 
this time is constant: 

7(E)= A&tj y (aL- l)eaL+ 1 
aj,(L,t)lJt = Lyui y(eaL-1)-l ’ (25) 

Using Eq. (2) in the form eaL= 1 •t l/y to rewrite the last 
term in the numerator, we obtain 

1 yaLeaL- 
r-- 

LyVi y(eaL-- 1)-l’ 03 
There are two limiting cases, small and large ‘y. 

A. Small y-3 

In this case ea’= l/y% 1 and 

aL-1 
r-,,-i~(e”l-l)-l]~l-~[~(~~~-l)-ll~’ 

B. Large 9-l 

In this case aLay-‘% and 

?-~(yaL--L)-l~?i. 
1 

Thus in each case 7% ri . 

IV. EVOLUTION OF THE DISCHARGE 

In the lowest-order approximation, with respect to j, and 
E-E, where E,, is the breakdown electric field, the system 
of equations (23) and (24) has the following form: 

$i,(L,t) 
~ =.i&t)KiEd(E- &r), at (27) 

$=-Xi&&,&t?, i28j 

where 

a 1 vi h( I+ llr)[(a h yldE)+(y+ ljLi~+‘ddEj]I~=~~~ 

KiEbr)=dE T(E) E=Bbr= ?i- (y+l)ln(l+lly)-1 (29) 

I 

and 

4rd 
X(Ebrj= ~~f2d [ 1 + l/y+ en(Ebr)L] 

--g+p+‘/Y). (30) 

We can find the differential equation for the I- V curve if we 
I divide Eq. (27) by IQ. (28). We have 

%iW 'd&r‘) ~--x(EI,[EW-W. L?E r 
(31) 

This equation is easy to integrate and we obtain 

j,(-Ltj+ - : $$[E(tj-EbJ3=c0nst=j~(L,tj,,. 
r 

(32) 

The value of this constant is determined by the initial condi- 
tions. If we initiate the discharge with low electron and ion 
densities, then j,(L,O) is much less than j,(L,t),, and 
j&U),, is given by 

1 K&r) 
j,(L,t~,,=-- - 2 x,Eb j @o-&r?- r 

(33) 

Here E, is the electric field in the gap at time t = 0: 
E,= U,,,(t=OjIL. Figure 2 shows a plot of ECq. (32) which 
is essentially the dynamic j-U curve for the discharge. Each 
point [U(t), j(t)] of this curve is a solution of Eqs. (27) and 
(28) and during the discharge this point moves along this 
curve in the direction shown by arrows, so that voltage in the 
gap can only decrease. As seen from this plot and from Eq. 
(32) the value of the voltage is symmetrical about the break- 
down voltage. Thus 

AE(t=a)=E(t=m)-E(O)=-2(Eo-Eb,) 

or 

(34) 
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HG. 2. j-U curve LEq. (3211 of a pdp cell near the breakdown threshold. 
Voltage normalized to a breakdown voltage vs current density normalized to 
the maximum current density. Each point (j, U) of this curve moves along 
the curve during the discharge, in the direction shown by arrows (the point 
where current density reaches its maximum is related to a breakdown volt- 
age). If initial voltage is below the breakdown voltage (point 2 on the 
curve), then the maximum current is the~one at this initial point. 

Later, when investigate the stability of the discharge, we will 
exploit this fact. 

Now that we have derived an expression for the j-U 
curve, we solve Eqs. (27) and (28) for j,(L,t) and E(t) 
explicitly. Substitution of Eq. (32) into (27) gives 

aj,WJ) 
-=;= k!Aj,(L,t) 

dt (35) 

where 

iI= J2X(EbrjK(Ebr)je(L,t)max” dEbrhO- Ebrj. 
(36) r. 

The plus and minus signs in Eq. (35) are related to the grow- 
ing and decaying parts of the current, respectively. Integra- 
tion of the Eq. (35) yields 

1 je~Umnx dx t=- 
cl I j. lj,, KjTT 

= t,+ ; ln 
hKZZ 
1 + 41 -jd. /j,,, 

(37) 

for td t( j,,,, j,), where 

(38) 

and 

1 

i 

1+ 
=t,+ - In 

n 1 - Jl -jdjmax i 
(39) 

for t>t(j max Jo). Here, for brevity, we suppressed the time 
dependence in the current and introduced the notation 
j,,-j,W,t>, jo=j,(L,Oj, and j,,- =max[j,(L,t)]. 

Usually j,,, is two to three orders of magnitude larger 
than j,, in which case Eq. (38) becomes 

&=A In 
?i,,, A i 1 ~ E-- 

j0 0’ 
(40) 

Typically h is .about 5-10, and does not change much be- 
cause it is a logarithm of a big number. It is convenient to 
rewrite Eqs. (37) and (39) in the following form: 

flit-tJ=ln i 
1+J1-j,,/j,, 

--I 1 - \I1 -~ jel/jmax * (41) 

Hence 

~=1-t~2[~(t2r,)l_sech2[~‘t~tm’]. (42) 
JIlKU 

Equation (42) together with Eqs. (33), (36), and (38) [or 
(40)] give the solution for j,(L, tj which we sought. 

We now solve for E(t). Substituting Eq. (42) into Eq. 
(32) and using Eq. (33) we obtain the electric field: 

=(&-Ebr) 
tan!$lR(t,-t)/2] 

tanh(ik,/2) * (43) 

The plots of the electric field in the gap [E(t)] and the total 
discharge current density (which is independent of z) 

J(t)=(l+ l/y)j,(L,tj=J,,, sech’ , 

are shown in Fig. 3. Here J,,=( 1 + l/r)j,,, is the maxi- 
mum value of the total current density. 

It should be noted that Eqs. (42) and (43) remain valid 
when E,< E,, ; however, fi and t, become negative and j,,, 
should not be interpreted as a maximum current, but only as 
a constant defined by Eq. (32). This is because if initial volt- 
age is lower than the breakdown one, the current cannot 
increase (the direction of the motion along the J- U curve is 
determined). Thus in this case initial current is the maximum 
one, and the value j,, determined by formula (32) should be 
interpreted only as a parameter of the J-U curve (compare 
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0.6 - 

time(tl2n) time(tl252) 

__ JIJmax 

FIG. 3. Current density (solid line) and gap voltage (dashed line), normal- 
ized to the maximum discharge current [!Zq. (33)] and breakdown voltage, 
respectively, vs time, normalized to the character&tic time rn [Eq. (44)], 
during the discharge in a pdp cell. 

points 1 and 2 in Fig. 2). Solutions (42) and (43) for the 
current and electric field show that a characteristic time ~for 
this problem can be defined as 

T=Ta-i$= K(&,rj,~,,-&,r,’ (44) 

The half-width of the current pulse is determined by the con- 
ditions jel/jmax= 0.5, which yields 

(45) 

It is insightful to note the analogy between Eqs. (27) and 
(28) and Hamilton’s equations for one-dimensional motion. 
Let us choose variables 

q=ln j,(L,tj, p=E-Eb,. (46) 

In terms of these variables, Eqs. (27) and (28) have the form 
of Hamilton’s equations for the motion of a particle with a 
mass equal to K-~(E,,J in the potential V(g)=X(Ebrjeq. In 
this case, 

i= d.Ed~, d= -x(&,&“. 

The energy equation for these equations is 
(47) 

1 4” 
@=-- 

2 ‘d&r) 
+ x(E,,,)eq=const, (48) 

which is essentially our dynamic Z-V curve [see EXq. (32)]. 
Solving Eq. (47) for ti and integrating over time, we obtain 
the time dependence of the current and electric field in the 
isap: 

¶W 
t= 

I 
h[ 

4(O) 

1 

= \/2’@ ,r)X(&j 
Here, as in Eqs. (37)-(39), the integration must be per- 
formed along the “trajectory.” Note that the trajectory has a 
“turning point” ifp(t=O)>O or E(t=O)>E,, and does not 
have such a point in the opposite case, when particle velocity 
(4) and acceleration (6) are collinear at t= 0. 

As a particular example of the theory developed above, 
we consider a discharge in a plasma display picture element 
cell. We estimate the characteristic time (45) for a typical set 
of parameters of the discharge, the time delay t, [Eq. (40)] 
between applying the voltage and the time when the current 
reaches its maximum value and the half-width and the maxi- 
mum value of the current. For this example,. we choose 
L-10-’ cm, d-0. lL, e-10, and y-0.25. From Eq. (1) we 
immediately find a=160 cm-‘, which determines the break- 
down voltage (electric field) for any specific gas. For He at a 
pressure p-400 Torr, using the formula7*” 

a=Cp exp(-Dm) (50) 
for a in noble gases with C=4.4 Torr-‘cm-’ and 
D = 14 [V/(cm Tort)] 1’2, we obtain 

D2p 
Ebr=ln2[CpL/ln( 1 + i/r)] 

= 1.37X lo4 V/cm, 

or Ubr=137 V. When differentiating y [as required by Eq. 
(29)] we can use the fact that, for moderate electric fields, the 
second Townsend coefficient depends on the electric field 
asg-il y= riJ( 1 + E/E). Here yfyi, is the vacuum value of the 
secondary electron emission coefficient and /? is about the 
ratio of the initial energy of an emitted electron at the surface 
and electron mean free path, ,?- Wo/(2eh,). In our example 
the gas density is N= 1.4X 10” cmM3, the momentum 
transfer cross section is vmt=5X lo-l6 cm’, A,= (Nfl,,j-l 
-1.4X lo-” cm, and Eli? is about 4/W,. We have not found 
any reliable data about the energy spectrum of the emitted 
electrons. At the metal surface W. is about 10 eV, but at the 
diele_ctric surface it may be significantly lower. Assuming 
E-E, we have (l/yj(dy/dEj=1/2E. Substituting the 
former into Eq. (29) and using Eq. (50) for a yields 

r-----l 
Vi Eo-Ebr 

h(l+l/y) 
a=-- 

1/2+(y+l)h(l+l/y) g dp/Ebr 
I 

L Ebc (y+l)ln(l+l/y)-1 

= pi(EO--Ebrj In(l+l/yj{l+(y+l)ln(l+l/y)hl[CpL/hl(l+l/y)]) 
2L (y+l)ln(l+l/y)-1 * (51) 
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For the chosen parameters, fi = 4.6[ ~i( Eo -E&L]. Choos- 
ing (E,-E,,)/E,,=O.l and h-9.2, we obtain 61-0.95X lo7 
s -I and t,,lml pus [see Eq. (39)]. The half-width of the cur- 
rent pulse is 71I2= 375 ns. One can find a convenient expres- 
sion for the total current at maximum using expressions (33) 
and (36): 

J ,,=(l+lly)j,,=il+lly) & ( Eo - Ed. 
r 

cm 
Using the parameters we have chosen for our example, we 
find J,,, -28 mA/cm’. 

V. THE STABILITY OF OPERATION NEAR THE 
THRESHOLD 

An important concern for any periodic system is the sta- 
bility within the operational regime and we now consider the 
stability of the discharge parameters during a sequential fir- 
ing. When the alternating voltage is applied to cell elec- 
trodes, the cell periodically fires. We assume that the half- 
period (T) of the external voltage wave form is larger than 
the discharge pulse time (D,). For our example of a pdp 
element, T is about (3-10)X IO-’ s, while 2t,, as we know 
from the above example, is only about 10m6 s. In this case 
the shape and time dependence of each pulse are described 
by Eqs. (37), (42), and (43). 

First, let us clarify what we mean by stability. Suppose 
we have a square-wave voltage with an amplitude U. ap- 
plied to a cell (see Fig. 1). For certainty we choose that one 
of the electrodes (i.e., right) is grounded. According to our 
solution [Eq. (13)] for the electric field in the gap, the volt- 
age across the gap U, =EL at any time can be represented 
as a sum of two terms. One of these terms is independent of 
the charge on the plates and caused by external voltage only: 

“Uo. (53) 

The other one originates from the charge accumulated on the 
dielectric surfaces: 

4md 
U,= E+2d,L (a,-rC)= .+8ZL (Ta’ .Z,L (T. 

(54) 
Let us assume now that at the time t = t, the external voltage 
changes its polarity so that U(t,) = U. is positive and there 
is a positive free charge u1 on the left surface (and corre- 
spondingly --cl on the right). If the total voltage across the 
m-3 

K&l I= &!I + UPI 9 (55) 
exceeds the breakdown voltage Ubr, then the discharge cur- 
rent grows, reaches its maximum at t = tl -t-t, , and then 
quickly decreases (compared to T). At the time t=tl +2t, 
the discharge is practically extinguished. At this moment the 
gap voltage is decreased by the value AU,, due to a charge 
deposition on the dielectric surfaces during this pulse, and 
U,,( t ,) -A Ugap<Ubr . The value of AU,,, depends on the 
total voltage across the gap at the time t, and we introduce 
the transfer functionf (Refs. 12 and 13) equal to this change 

A Ugap as a function of the total voltage across the gap at the 
time when the applied voltage just changes its polarity. Thus 

A Ugap= A f-&x,( u,, 9 VI,,> =fi u,, 9 ubrj + (56) 

The new voltage due to a charge lJv2 is equal to 

uc2’ u,1 -fl~,a,(tl)~Ubrl* (57) 

When t= t2= fl + T, the external voltage changes its polarity 
and the total voltage applied to the gap becomes equal to 

ug,<t,> = - u;, + ulr2. (58) 

Since we seek periodic operation of a cell we must require 
the following conditions: 

U,,it+ 0 = - &,,(t)v u,,it+m= U,,,(t>. (59) 

Applying these conditions to Eqs. (55) and (58), we obtain 
the conditions of the periodicity in the form Cl,,= - UC1 or 

Au,,,=2u,=2(u,,-u;). (60) 

Simultaneous solution of the system of equations (56) and 
(60) determines the value of Ugap (or U,) necessary to sat- 
isfy the periodic conditions (59) as a function of lJ6 . Com- 
bining Eqs. (56) and (60), we obtain one equation for deter- 
mining U,, : 

f(U,,,,Ubr)=2U,=2(Ugap-U;)). (61) 

Let us assume that at some moment there is an initial 
difference SU, between Ugap and the solution U,,(UAj of 
Eq. t.61). For example, fluctuations in the applied voltage can 
lead to this situation. We say that operational regime is stable 
if ISU,,,I decreases with time and unstable if it increases 
with time. For a pdp element this problem was investigated 
earlier’2”3 in terms of the transfer function. The result is that 
a solution U,,,( VA) is stable if 

8(x) 
o-Tc- <2. 

x= (I&u;) 
(62) 

Let us now apply this to the results we obtained in the 
previous sections. We have found that the transfer function is 
a function of the difference USap-Ubr [see Eq. (34)]: 

fi u,, 7 ubr) = f( Ugap - ub,) = 2t u,,- ubr). (63) 

Comparison of Eq. (56) with the transfer function (63) and 
Eq. (60) shows that our system of equations (56) and (60) 
has no solutions for Ugap if Uh # Ubr [Eq. (61) cannot be 
satisfied], and an infinite number of solutions for U,, if 
Uh = ubr [Eq. (61) is always satisfied]. This situation is, 
obviously, unstable with respect to a fluctuation of UA . The 
degeneracy of this case is a direct consequence of the linear- 
ity [EQ. (63)] of the transfer function in the vicinity of the 
breakdown. Any additional nonlinear term in f(xj removes 
this degeneracy, so we have to take into account such terms. 
Let us expand the f(x) up to the second order of x near the 
threshold (here x = U,, - U,,) : 

f(x)=2xf ) 0x2, (64) 

where w= d2f(xjldx”l,,0. Using Eq. (61) we obtain 
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2x+ ; 0x2=3,(x+ ubr-- u;), 65) 

which has the solution 

- U&= 2 
Ubr- % 

w * 

This solution is unstable if w>O, and stable if wC0. How- 
ever, if o<O the operation requires a sustain voltage UA 
higher than the breakdown voltage Ubr, and hence, in this 
case, we do not have an “off” state, 

To find the first nonlinear term in f(x) we should return 
to Eqs. (27) and (28) and save the terms of the order of k in 
the equation for Jj/& and (E-E,,)( da/dE) in the equation 
for dEldt. Doing this yields the following form of the system 
of equations (27) and (28): 

~j,(LJ) ~ =j,iL,f)K(Ebr)~-jeiLlt) z ~8 dt (67) 

(68) 

where e= E - E,, 

L da 
P=TdE 9 

i E=E,,, 

and 

(69) 

(<)=y~oL~(z)cxe~z dz. (709 

Here we denoted rj(z)=zIui . Note that both p and + are 
positive. Dividing Eq. (67) by Eq. (68) we obtain the follow- 
ing equation for j( 5) : 

with the “initial” condition j( lo) = 0, where to= E, - E,. 
Integration of this equation gives 

j(t) = ( 1 + $5) 

xi~~++2+~O~j ' i (72) 

The second root of the equation j( 5) = 0 (the first is & =to) 
I determines parameter E. Since it must be close to “-to” we 

represent it as 6= - $+ SC In the lowest order in PC and @c 
we have 

&f= - 3 W-P)&. 039 

Thus 

f(x)=2x+ $ (+/3)x*. (749 

Let us now consider the sign of the w near the threshold: 

(3) CXL 1 
l+-mvi--- -- i 1 (d 2 E E=Eh,’ 

(759 
With an accuracy of a few percent we can write, for a wide 
range of ffL, 

(4 m=Oe7 $ 
and using aL=ln(l+y-‘) we get 

1 dff 
-& z (1+0.2 ln(l + y-i))- ; 1 . 06) 

To be specific, let us again consider a discharge in He. Sub- 
stituting Eq. (50) into Eq. (769, we obtain that w=O for elec- 
tric field 

2 c1+0.2 ln(l+y-1)) I 
=49(1+0.2 ln(l+ Y-‘))~. 

For y-0.25-0.3 this gives E,lpc~85 V/Ton: If the break- 
down electric field is less than this value, then w>O and a 
stationary solution for the amplitude of the voltage across the 
gap is unstable. In the opposite case (E > E,), it is stable, but 
it exists only for applied voltages higher than the breakdown 
one. In the example we considered in the end of Sec. IV, 
EbJp was only about 35; thus the periodic operation would 
be unstable in that case. 

Vi. THE ROLE OF METASTABLES 

We now consider how metastable atoms may influence 
the discharge during a sequential firing. Metastables can in- 
fluence the dynamics of a discharge because they can serve 
as a source of ions and electrons through the following pro- 
cesses: 

A,+c-+A++e+e, (77) 

A,+wall-+A+y,e, im 
A,+A,-+A+A++e, (79) 

where y,,, is the secondary emission coefficient for meta- 
stables (number of secondary electrons produced on the sur- 
face per incident metastable). 

The rates of all of these reactions are proportional to 
either the metastable density N, or Ni; hence we can ne- 
glect them if the density of metastables is not very large (the 
meaning of large will be defined later). This is correct if we 
consider a single pulse with a low initial density of meta-- 
stables, or if there is some effective mechanism of their loss 
other than reactions (77)-(79) which does not lead to pro- 
duction of charged particles. The diffusion of metastables to 
the anode, or out of the discharge region, or the electron 
excitation of a metastable with successive photon emission 
are a few examples of metastable loss without the production 
of charged particles. 
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However, it is easy to imagine conditions when the den- 
sity of metastables is large enough so one cannot neglect 
their influence on the discharge. These conditions can be 
realized during the stable operation of the pdp cell when 
metastables accumulate in a cell during many pulses. They 
may reach such a high value that their production and decay 
during one half-period of the applied voltage become equal. 
Although the detailed analysis of this situation is beyond the 
scope of this paper, it still useful to discuss qualitatively the 
possible influence of metastables on the dynamics of the dis- 
charge. 

To evaluate the effect of metastables we should compare 
the rates associated with Eqs. (77)-(79) with the ionization 
rate of electron-atom (in a ground state) collisions during 
the discharge and with collisions of ions on the cathode sur- 
face. Let us denote the cross section for the ionization of the 
metastable as ai?, and the rate of the second process [see Eq. 
(78)1 as rl. The electron production rate including reactions 
(77)-(79) is 

where n,=n,(t) is the solution for the electron density ob- 
tained in Sec. IV (without metastables), ci the ionization 
cross section of an atom in the ground state by electron im- 
pact, u the electron velocity, and 7u a time of losses for 
metastables due to their diffusion to a wall. The brackets 
(. . .)e mean averaging with the electron distribution function, 
and G1 is a geometrical factor giving the fraction of the 
metastable diffusive losses reaching the cathode. The density 
of metastables N, can be determined from the following 
balance equation: 

where v,*, is a cross section of electron ‘excitation of meta- 
stables, and qr[ is a cross section of collisions in which elec- 
trons deexcite a metastable, returning it to the ground state 
(superelastic collisions). Integrating this equation over a 
half-period (r) of the applied voltage and equating this in- 
tegral to zero, we find the equation for determining the quasi- 
stationary density of metastables: 

No(~JJ)e%v?z~1/2= ((a~u),+((~~+~~l)U),)N,n,,~l,2 

+TkN;+ -If,. (82) 
70 

In the above 71,2 is a half-width of the current pulse [see Eq. 
(45)1, and ncm is the maximum electron density during the 
pulse. 

We now show that we can neglect the terms containing 
a;l and o$ compared to the term containing ~2 in Eq. (82). 
Indeed, since the electric field during the pulse is relatively 
high, 

(83) 

the distribution function of electrons is slowly varying at the 
energies below the excitation threshold (Wex), and drops fast 
at energies above it.14.15 In the same energy range (below 
W,,) all three cross sections-& ~2, and u,,may be 
treated as constants.‘6 Hence the ratio of these terms is about 
(~~,u),:(a~u),:(~~~),-~~~:a~:a~. Typically c~,~ 
+ mi < CT: which justifies our assumption (for example, in 
He 11, 2 s1-10-17, af,-10-15, and a: - lo-l4 cm’). 

Let us now compare the remaining terms on the right- 
hand side of Eq. (82) with the source term (left-hand side 
term) to find the metastable densities at which each of these 
terms becomes important. One can estimate the excitation 
rate (~~u)~ for moderate fields as15 

(84) 

Comparison of the source term No(~,u),n,,~1,2 with the 
excitation term N,(~~u),~,,~~,~ shows that the excitation 
term is important when the metastable density is about or 
exceeds a value of N,,i, defined as follows: 

Nmi (umu)e 
,-m-g($)‘=4%($)‘. (85) 

Here g,, is the momentum-transfer cross section, and we 
used (o.$), - a;(u), - azuex/2, where u,, is electron 
speed at energy W,,. Typically this ratio is about 10m3. In 
our example for He (used in Sec. IV), crz - lo-l4 cm2, 
ffmt/o-; - 3 X lo-*, (a,~),-lO-~ cm3 s.-l, and we see 
that (a,,,u),l(a~u), - 1 O-“. This means that the electron 
excitation of the metastables may play a significant role only 
at very high densities of metastables. The other terms in Eq. 
(82) become important at much lower metastable densities. 

The “annihilation” term (proportional to Ni) is impor- 
tant if the metastable density exceeds a value N,,a : 

N f-f: d 
nem ~112 (o;nu>e Y&--y k . (86) 

One can express the product rz,,~*,~ in terms of the voltage 
drop AU during the main pulse as 

: 
Jem71/2 EAU 

nemr1i2 
=---.--=G jmw2 em.w.--.G - 

cud * cud a 8redud’ (87) 

where j,, is the electron current density averaged across the 
gap and G, is a geometrical factor reflecting the difference 
between ye,,, and j m : [ Gor=jem/jm= (1 - e-“L)IaL]. We 
also used the fact that the voltage drop due to the electron 
current is only a half of the total voltage drop AU. Substi- 
tuting the relationships (84) and (87) into (86), we obtain 

=1.5x10--” JW. (88) 

Using the data for our pdp example, He at room tem- 
perature, ‘* k-4X lo- 9 cm’ s-I , Ga”[(l+ yi)Ml 
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+llyij]-0.5, and choosing T=5 ps, we 6nd N,,,,lNu 
- 0.57 X 10 -” &%?, which is indeed much less than 
Nm.iINo * 

The diffusion term is important when the density of 
metastables is approximately 

N m,D rD 

- = 7 (~,u),nz,,w2 
No 

-G ti L*bw~>e Au 

D a 12L.X,u,T 8+rrdeud’ (891 

where X, and uR are the mean free path and speed of a 
metastable and Gp is another geometrical factor dependent 
on the diffusion mode. For the main mode between flat par- 
allel electrodes, GD= 1. In the above us is the same as for 
ground-state gas atoms, but the mean free path X, is smaller 
than that of gas atoms since the cross sections for a meta- 
stables are very large (X,- 0.4X,). Again, for the param- 
eters we have chosen in our example, we have 
N,,,INo--10-5GDAUJU. This value is less than N,,, near 
the threshold, so the quasi-stationary density of metastables 
in our example will be determined by a diffusion. However, 
the annihilation term can have as big a contribution as a 
diffusion term in the production of electrons, since the factor 
G, may be significantly lower than unity, especially if we 
take into account 2D and 3D effects. 

The above consideration shows that in any case the 
metastable density is determined by the terms proportional to 
T in Eq. (82) and that we can neglect the second term in Eq. 
(80). Hence we can rewrite Eq. (80) qualitatively as 

i,-(UiU)eNone + G( c+,u)Jfo F, 

where the factor G describes possible strong losses of meta- 
stables due to diffusion and not to the cathode. The last term 
in Eq. (90), induced by the metastables, is small compared to 
the first one when the electron density is high {near the 
peak), but it is the only term when the electron density is 
low. This term does not affect the characteristic time (a-‘), 
but strongly influences the time delay t, and the voltage 
drop during the total half-period of applied voltage. Actually, 
the voltage drop due to the metastable decay may be compa- 
rable to or even larger than the voltage drop during the 
“fast” part of the discharge and is determined by the ratio 
G( ~,U),l( ~iu), . If this ratio is small, then the voltage drop 
during the afterglow is small. In the opposite case, it may be 
even larger than during the main current pulse. Obviously, 
this voltage drop due to a metastable decay or diffusion to 
the cathode may influence the stability of the operation. 
However, if the system is unstable, then the instability devel- 
ops earlier than the metastable density reaches the value at 
which they become important. 

VII. SUMMARY IVEIE[-‘+ W/(eE), [i/El*(eE)‘/( Wmv,,). (Al) 

This paper describes the characteristic features of a high- For ions in their own gas one can estimate W  as 
pressure ac discharge between electrodes coated with a thin Ts + eEl(NorCx>, where Tg is a gas temperature and u, is a 
layer of dielectric material when the applied voltage only charge-exchange cross section. For the case when eEl 
slightly exceeds the breakdown voltage. In this case the cur- (N,(7&>Tg conditions (Al) have the form 

rent never reaches a high magnitude so one may neglect the 
distortions of the electric field caused by the ions and the 
problem can be solved analytically (the discussion of the 
space-charge effect is given in Appendix C). We found ana- 
lytical expressions for the spatial distribution and time de- 
pendence of the electron and ion currents, and a current- 
voltage (j-U) characteristic curve. The temporal depen- 
dence of the current and particle densities is determined ex- 
clusively by the ion transit time between electrodes, and the 
parameter A[A= y(eaL- 1) - I]. This parameter characterL 
izes the increment of production of secondary electrons in 
one ion transit time. If A is small, then the dynamics of the 
discharge is determined by all the ions in the gap. They all 
need to be collected at the cathode in order to produce-an 
excessive number of electrons. If A is large, then the cathode 
region itself can produce enough particles to sustain the dis- 
charge and the temporary growth of the discharge is more 
rapid. 

A particular example was used to illustrate the utility of 
our theory, that of a plasma display element. Analysis of the 
dependence of the j-U curve was used to investigate the 
stability during sequential firing of the cell near the thresh- 
old. It was shown that for typical discharge parameters and 
in the absence of metastables the cell is unstable near the 
threshold. 

Metastables do not induence the dynamics of the dis- 
charge pulse near its maximum. However, they strongly af- 
fect the initial current and afterglow current and thus the time 
delay t, between applying the voltage and the maximum of 
the current [see Eq. (40)] and the voltage drop in the after- 
glow. 

Our results provide a good understanding of the pro- 
cesses in the cell during the discharge and afterglow when 
the cell is tied in an ac mode. These results can be also 
applied to an initial part of any discharge and will apply until 
the current density reaches a relatively high value. 
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APPENDIX A 

The drift velocity reaches its equilibrium value at the 
distance I, - WIleE) and in time tv--l,mu,,l(eE), where W  
is the average energy of the particle and vtr = No(cmu) is the 
collision frequency for the momentum transfer, so the latter 
conditions can be written as 
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we obtain a differential equation for j,(L,t): 

Jj,Gt) 
Usually, however, eEl(N,pc,) - Tg . dt 

For electrons, the value of W can be much larger than for 
ions, since they loose only about m/M fraction of their en- 
ergy during an elastic collision with an atom, and if the elec- 
tric field is high enough [eEh, % W,,d%?%, where 
h,- l/(Necr,,), IV,, is the excitation threshold, and m and 
M are electron and ion masses, respectively], then they can 
easily reach the excitation energy WV,,. However, as soon as 
they reach We, they can effectively loose their energy in 
exciting or ionizing collisions with gas atoms. If the electric 
field is not too strong, e EX, +=s W,, ds, where oil is 
total inelastic cross section at an energy roughly 2W,, then 
the electron distribution function cannot spread far beyond 
the threshold and the electron average energy is of the order 
of IV,, . The above consideration also requires that, between 
two collisions, the electron gains much less energy that it 
already has. Combining this requirement with conditions 
(Al), we obtain for the time and length scales of the chang- 
ing of the electric field 

Equation (B5) can be greatly simplified if the ion transit time 
7.-LIui is much less than the characteristic time 7: riQ7. 
1: this case we can find from Eq. (B2) 7i(Z) = (L - z)lU i and 
neglect all the terms containing i’, like iu~iL and 7. After 
this, the integration in Eq. (B5) becomes very simple and we 
obtain Eq. (23). 

APPENDIX C 

Space-charge effect 

Here we show that the space charge has a small effect on 
the dynamics of the discharge in a pdp cell near the thresh- 
old. The main effects caused by the space charge at the be- 
ginning of the discharge, when the current is still small, are a 
changing of the value of the integral Ja(E)dz, due to dis- 
tortion of the electric field in the gap and change of y, which 
depends on the value of the electric field in the vicinity of a 
cathode. Expanding au(E) up to the second order with re- 
spect to the difference E(z,tj - E,, , which we consider small 
compared to the E,, , 

VE -’ wex we, 
I I 

l? 
E %-eE=~LSA,, I I 

(eE)’ <v 
iPmvfrW,,< tr , 

(A3) 
and for the magnitude of the electric field we have 

WexNocr,,~~4eE~ W,,No d=; 

here we substituted E= UIL. 

APPENDIX B 

The solution of Eq. (17) can be obtained using the 
method of characteristics. Using the boundary condition 
ji(O,t)=O, we obtain 

j,(Z,t) = I ‘Cy(t- Ti(Z ,z’)lj,k’,t- q!z,z’j) 
0 

Xe~(t-~i(Z,Z’))(Z-Z’) dz’, 
(Bl) 

where a(t)~culE(t)] and 17=v;‘(dvilat)=~/(EVi), and 
ri(z,z’) is the function, determined in the equation 

7-,‘= & c 
J‘ 

t 
vi[E(t’)]dt’. 032) 

t-r{ 

Substituting the solutions (16) into Eq. (B 1) and using the 
boundary condition for the electron current j,(L,t) 
= yji(L,t) we obtain an integral equation for determining 
j,CW: 

j&t) = y oL4tm ~i(Z)lj,[Lt- TiiZjI 
I 

X edt- Tii(Z)lZe a@- riFi(Z))lZ dz, 

where Q-~(Z)= 7i(L,z). After expanding j,(L, t 
argument of the integral [Eq. (B3)] 

Jj,Wi 
j,(L,t-7iiz))=j,(L,t)- at ___ q(z), 

- 
(B3) 

r&j) in the 

(B4) 

yJia(t- ri(z))e”(f-7i(Z))Zeq(f-7i(Z))Z dz- 1 

(B5) 

a(E)=c-x(Ebr)+(E-&jcr’+ f (E-E,J*a”, (Cl) 

and introducing the space-charge distortion of the electric 
field SE(z,t), 

E(z,t)=E(t)+&E(z,t), (C2) 

such that 

v(t)=E(tjL, oL~E(z,t)dz=O, 
I (C3) 

where U-lJ(t>=J$E(z,t)dz is the voltage across the gap, 
we obtain 

I ‘a(E)dz=a(E,,JL+ 
0 

a’+; a”(&E,,J (U-Ubr) 1 
1 

+ 5 an 
I 

,‘( SE)’ dz. (C4) 

Similarly, for y we have 

Y= ‘dEbr)+ ‘I”[@-‘%,)f WL)I. (C5) 

In order to simplify notations we dropped the arguments of 
SE(z, t) and U(t) in these expressions and used a “prime” 
to denote the E derivative d/dE at the E = i& . The terms 
proportional to U- ub, in Eq. (C4) and to E- & in Eq. 
(C5) reflect the influence of the charges accumulated on the 
plates. They always decrease during a discharge as f? de- 
creases with time according to Eq. (28). The terms contain- 
ing SE reflect the influence of the space charges, since they 
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exist only in nonuniform fields and they may increase during where the function F,( crL)< 1 is a dimensionless integral 
a discharge if the nonuniformity of the electric field in- F,( nL) = (1 21L’).fhF2(z)dz. With the terms containing 
creases. GE(z,t), Eq. (31) obtains the form 

Jn our consideration in Sets. III_ and IV we neglected 
terms containing SE and term 1/2d(E-&)‘L in the expan- 
sions (C4) and (C5). To establish the validity of that approxi- 
mation, we should include all of these terms in the E@. (27). 
First of all, note that the term l/20!‘@ - &,,)‘L is practically 
always small compared to a’(U- U,J. Indeed, one can ne- 

~=-2x-auoy+bu;33. (C14) 

where y =j,(L, t)/j,,=j, (L,t>12x(Eb3/K(Eb,)l(Eo-Ebr)-2 
is a current density, normalized to its maximum value [Eq. 
(33)] in the absence of a space charge, x= (E- E,,jl 
CEO - 43 is the normalized electric field, 
u,, = (E, - 4,,)&, , and coefficients a and b are the follow- 
ing: 

ln(l+ l/y) EL F(L) y’ 
a=(l+~)ln(l+lly)-l 2dLyEbry 

glect it if 

1 
2 

&“(&Ebrj 4cY’ 

or 

; (I% Ebrj(ln a’)’ 

633) 

41. (C7) 

For the dependence a(E) of the kind a(E)aexp[-D(p/ 
E)““], this gives 

Thus for any electric field more than 

4X D 2 -’ n(n+l) ’ P i 1 

W 

(C9) 

condition (C6) is equivalent to Il? - E,#&.,r~ 1, which we 
considered as always being satisfied. For He, D = 14, n = 2, 
and condition (C9) results in &&!p5.5 V/(cm Torr). 

Now let us consider the effect of the field distortion. One 
can find the value of SE(z,t) by solving EQ. (5) with condi- 
tion (C3). Neglecting the electron density compared to the 
ion density and using condition (2) and solution (12), we can 
rewrite Eq. (5) in the following form: 

4vJ(t) 
; GE(z,t)= ~ vi Cl -exp &--~)I 

4r( 1+ Y)j,W) Fd 
Vi 

[ 1 -exp a(.~-L)], 

(ClO) 
which has a simple solution: 

GE(z,t) = 
47r(l +)le(w F(zj, 

with 

F(zj=z-L+e-nL l z CY ~ -$e [ @I.- l)-pz . I 02) 

Substituting Eqs. (Cll) and (C12) into integral (C4), we ob- 
tain 

I L *(1+ y)j,(L,t) 2 1 L3F1(aL), (C13) 
0 YVi 

8 
bwT 

d4 1 + y)jm&,,r 2 a”(1 + y)LE,,,Fl(aL) 

yvi(Eo-Ed2 a’L(l+ y)+ y’Iy 

2 cx”Ebr cr’L( 1 + y)F*(aL,) 
-2- cu’L(l+y)+y’ly’ 

Analysis of E!q. (C14) together with Fq. (28) shows that one 
can neglect space-charge effects if both coefficients au0 and 
bui %e small compared to unity. For the example we con- 
sidered in the end of the Sec. IV, it gives (E. - E&E,<O. 1. 
In the case when any of the coefficients au0 or bus is of the 
order of unity or larger, one should take into account the 
space-charge effects. With this statement we close our dis- 
cussion of the space-charge effects in this paper. We are 
planning to discuss this topic in much more detail in the 
following paper devoted to a discharge far from the thresh- 
old. 
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