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Abstract. The back-scattering of secondary electrons toward the cathode in a
high-density noble gas and the resulting effective secondary (electron) emission
coefficient, ESEC, is evaluated using a kinetic approach. The behaviour of the
ESEC in a mixture of noble gases is also discussed. The obtained results can be
applied to different sources of secondary electrons—ions, photons, etc. We provide
a comparison of obtained expressions with experiments.

1. Introduction conditions when the electron mean free pathis small
compared to the scale-lengthof the problem, and electric

The phenomenon of secondary electron emission from afield E is weak, so thatExr, < W, where W is the
surface under the action of a primary particle (photon, ion, electron kinetic energy. We assume, though, that the
excited atom, etc) plays an important role in gas discharge electric field is high enough so that one can neglect the
physics. This role is reflected in the theory by the effective energy exchange between electrons and heavy particles in
secondary emission coefficient (ESEZ) the number of  elastic collisions. For simplicity we consider only the case
electrons leaving the cathode surface per impinging primary when the electric field is uniform and directed normally
particle [1, 2]. In a high-density gas thegrows withE/p to the surface (compare with [7,8]). Since the value of
at low E/p values (whereE is the electric field ang is a ESEC involves electron dynamics, it is natural to expect
gas pressure), and reaches a constant value at hjgh that its value will be different in the stationary and non-
[3-6]. The mechanism responsible for this dependencestationary cases. We will assume everywhere that the
was identified as a reflection of a part of the secondary electric field in the whole region, which determines ESEC,
electrons from the gas atoms back to the cathode surfaces constant or changes much more slowly than the time of
[1]. Based @ J J Thomson's simple hydrodynamic model, establishing a quasi-equilibrium state in the same region
Loeb proposed a qualitative expression describing such a(later we will specify these conditions). In this sense we
behaviour [1,2]:y = y;[4vs/(vo + 4v,)], Wherey; is the will consider stationary or slowly changing electric fields.

vacuum value of the secondary emission coefficiégtis Electron dynamics in a gas does not depend on the specific
the average speed of electrons just emitted from the cathodesource of secondary electrons (ions, photons, etc), and the
anduv, is the electron drift velocity. resulting expressions can be applied to any of these sources.

Using a kinetic approach for electrons we have However, to be specific we will consider only one such
considered analytically [7] the case when the voltage acrosssource—their liberation from the surface by the action of
the gap does not exceed the excitation threshold of an atomions.
and found that electron scattering at large distances from  According to a common situation in noble gases we
the cathode [ >> 1.) contributes to returning electrons to assume that the excitation and ionization thresholds are
the cathode and hence, to the inhibition of the ESEC,  higher than the energy of secondary electrons near the
In principle, they value for the discharge is determined surface [9]. Indeed, the cut-off of the energy spectrum
by the electron transport in the whole gap, not only near of secondary electrons is abolif; — 24, where W; is
the cathode. The value of is determined by the close the ionization potential of the gas atoms awdis a
vicinity of the cathode surface only if the electron transport work-function of the surface (the maximum of the energy
cross-sectiom;, drops fast enough with the electron kinetic  distribution function is at about half of this value [9]).
energy. Since the excitation threshol#,, of all noble gases is

In this report we consider another case, when only 4-5 eV lower thanW;, all or almost all of electrons
the voltage across the gap significantly exceeds thehave energy belowV,, when they leave the surface.
excitation/ionization potential. As we did before [7], we The paper is organized as follows. In section 2 we write
limit our consideration to a weakly ionized noble gas under the basic equations describing the problem. In section 3 we
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analyse the case of the noble gases and find the ESEC foto a uniform electric field case). In the new variables (2)
them. Several analytic solutions of the kinetic equation, and (4) take the following form:
which are presented in this section, are of some value 3fo(z, €) 1 9 3

themselves as they can serve as benchmark solutions forT = ?a——a—fo(z, &) + Cu(fo) + CL(fo) (7)
testing numerical codes. In section 4 we analyse the ESEC ! v 02 Vir 02

for mixtures of noble gases, and, finally, in section 5 we (¢ ) = v 0oz, €) (8)
give a short summary of the obtained results. Vir 02

wherev is considered as the function of, ) according
to (6). According to (6) > O at the cathodez(= 0), so
thate > 0 is a necessary condition for electron to return

Let us consider a planar anode—cathode gap of widémd to the cathode, and for evaluating ESEC we need to know
direct thez-axis normally to the cathode, so that the electric the electron distribution functioonly in the energy range
field is anti-parallel of the axis. Due to a symmetry of the ¢ > 0.

problem we conclude that the gradient of the distribution As we mentioned in the introduction, if the electric field
function is also colinear with the-axis. As was mentioned IS hot very small, then one can neglect the energy exchange
in the introduction we consider herein the case of a high- between electrons and neutral gas ator@§ (o) = 0).
density gas or weak electric field, so that the electron Indeed, an electron gains kinetic energy in the electric
mean free path is small compared to the scale-length offield with the rater, ~ eEvy ~ (eE)?/(mv;,), where

the problem, and the kinetic energy that electron gains Var ~ ¢E/(mv;,) is electron drift velocity, and loses it (due
between two collisions is small compared to its kinetic !0 elastic collisions) with the rate. ~ (m/M)v, W, where
energy,cEx, < W. In this case the electron distribution W = mv?/2 s the electron kinetic energy, and is a mass
function (EDF) is almost isotropic at distances from the Of @ background gas atom. One can neglect the energy

electrodes exceeding a fey and one can use for it a €xchange in elastic collisions if, > r_. Comparing
representation [10] these rates we f|nd tha’t; > o in the WhOle range Of

electron kinetic energies up to excitation enelgy,, when
f(r,v,t) = fo(r,v,t) +8f Gf < foy (1) eEAr, > J/m/MW,,.. Under this condition the electron
reaches the excitation threshold without losing its energy.
where isotropicfo(r, v, 1) and anisotropi@/f parts satisfy  We assume here that the electric field satisfies this condition

2. Basic equations

the following equations [10]: and neglect the (fo) term in (7).
dfo 1 9  eE 9\ v2 9 eE 9 The inelastic collision termC;;(fo) consists of two
ar @< 9z 7%) Vo (”;TZ ;%> fo parts: the scattering ‘out’ of an elementr(dtv) of a
1 2 phase space (‘sink’ term) and scattering ‘into’ the element
+Ci(fo) + C,;(fo) @) (dr, dv). As we mentioned in the introduction, the
8f = —gcosd 3 excitation thresholdy,,, in noble gases is usually larger
whereE = |E,| = —E, than the maximum of the energy spectrum of emitted

electrons,W,,,.. Thus, after only one inelastic collision
) the electron leaves the initial energy range:@ < W,,qx
(energy becomes negative and the electron leaves the region
within which it could return to the cathode), so that the
and 6 is the angle between the velocity vector and the gcattering ‘into’ term is absent in this energy range, and for

gv) = E (va—fo + ga—fo>
0z m v

tr

z-axis. Herev, = No,v is the electron collision  the inelastic collision tern€;(fo) in this range of energies
frequency, o, is the electron—atom momentum transfer e can write

Cross-se_ctlon,C,-l(fo) is an inelastic coII|_3|on tgr_m, and Cii(fo) = —vi(v) fo. (9)
CL(fo) is the part of the electron elastic collision term )

describing the energy exchange between electrons andere vi(v) = Nv(}, ox(v) + oi(v)) is the energy
neutral gas atoms. We shall discuss €hg fo) andCk ( fo) dependent frequency of inelastic collisions;(v) is an
later. The electron density, and electron currenj, are excitation cross-sectio; (v) is the ionization cross-section
related tofo andsf, respectively: and N is the background gas density. It should be noted

thate > 0 is a necessary condition for electrons to reach

the cathode, so that after one inelastic collision the electron

leaves the initial energy range and automatically leaves the

- region within which it could still return to the cathode. The

jo= _e/v" 5f o = ﬂ/ v3g dv. (5) absence of the scattering -'in’ term allows one to consider
' - 3 Jo EDF and ‘differential ESEC’ (see later) independently for

It is convenient to choose new independent variakies)( every energy layerWo, Wo + dWo).

o0
n, :471/ v? fodvu
0

instead of ¢, v), where Since W,.., < W,,, electron kinetic energy at the
surface,Wpy, is not sufficient to excite an atom, and inelastic
e =mv?/2 — e¢Ez (6) collision can occur only beyond certain distance from the
cathodez; (Wp):

is the electron energy, and we also chogse- O at the
cathode (we remind the reader that our analysis is limited z21(Wp) = (W, — Wp)/eE (20)
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after the electron gains enough energy to excite an atom.and the current of electrons returning from the bulk of

For the distances from the cathode closer thatWy),
Cii(fo) = 0. Beyond this pointz > z;(Wp), an electron
with total energyW, can undergo inelastic collision. Using

the discharge volume. Here we introduced the differential
vacuum secondary emission coefficiéhtWy)y;, where the
function G(Wy) shows what part of the emitted electrons

the energy conservation law (6) for the electron before has the initial energy in the rangévg, Wo + dWy), and
it experiences an inelastic collision we can rewrite the satisfies the normalization condition

collision term (9) in terms of energy and coordinate,
vir(v) = vy (W) = v (Wo + eEz).

We shall discuss the boundary conditions for (7) in the

next section.

3. Effective secondary emission coefficient for
noble gases

Wnax

/ G(Wo)dWwp = 1. (26)

0

There is a temptation to present the current of electrons
returning back to the surface as constituted by the
‘hemisphere’ of the electron distributiorf, near the
cathode. In our approximation (1) this would give
(remember that with our choice of the direction of the

As we consider here secondary electron emission from the
cathode due to the action of ions striking the cathode, we
identify the ESECy with the ratio of the electron and ion
currents near the cathode surface. Since we consider every

energy layer in the range @ ¢ < W, independently, we  where n. is the electron density in the vicinity of the
will first find the ‘differential’ ESEC as a function o cathode (at a distance of a few mean free paths

and electric field. Then, integrating the differential ESEC and vy = /2Wo/m the electron speed near the cathode.
over the spectrum of emitted secondary electrons we shallThis expression, however, does not take into account
find the total ESEC as a function of electric field. The (i) scattering of these electrons back into the discharge
width of the energy spectrum will serve as a parameter, gap at distances smaller thap (i.e., a phenomenon that

electric field the current is negative)

en.vo/4 a7

characterizing the surface—gas interaction.

The stationary solution of (7) (in the energy range
¢ > 0) differs from zero only at the energy equal to the
initial energy of electronsg = Wy,. Accordingly, the
general stationary solution fofy is

fo(z, &) = F(2)8(e = Wo) = F(2)8(W —eEz — Wp) (11)
where F (z) satisfies the following equation:

1909
f—f—F:Uil(U)F.

12
3v dz v, 07 (12)

would reduce the flux with respect to the expression (17))
or (ii) back-scattering of the just emitted electrons (i.e., a
phenomenon that would increase the flux to the cathode
with respect to (17)). The relative role of these two
phenomena depends on the peculiarities of the differential
scattering cross-section and on the angular distribution of
the emitted electrons. In other words, expression (17)
should in fact be multiplied by some unknown numerical
factor ¢ of the order of unity (which can be found by
the numerical solution of the Boltzmann equation at the
distances~ A, from the wall).
There exists a special case whenis just equal to

Substituting (11) into expressions (5), we find the electron 1. This is the case of isotropic distribution of emitted
density and current constituted by electrons of the energy electrons and weak electric field. Then the situation near

Wo:
2mevd dF
ne=2nFv  jo= 200" (13)
3y, 0z
or 3
ev® 0 n
o = — 14
J 3y, 0z v (14)

v is considered here as a function pfgiven by (6) with
&= Wo.
Let us now formulate the boundary conditions for the
F(z). One of them is obvious:
F(iz)— 0

whenz — oo. (15)

the cathode is only slightly (in the parameteEa,/ Wy
and./L) different from the case of the isotropic electron
distribution confined by the perfectly reflecting wall, i.e.,
the case when the distribution function is isotropic even
at z <« X.. Accordingly, for an isotropic distribution of
secondary electrons and small electric fields, we have the
following boundary condition at the cathode:
Je(Wo) = G(Wo)y, ji + encvo/4. (18)
Here j, andn. should be expressed in terms of the function
F(z) using (13)—(14). In (18) we used the notatigiWo)
to remind the reader that this current is related to a specific

This condition reflects the fact that sooner or later every energy Wy, while j; is the total ion current density. Note
electron which has large enough kinetic energy experiencesthat at small electric fields the two terms in the r.h.s. of

an inelastic collision.

Although the distance between (18) almost exactly compensate each other so jhak

electrodes is finite, we can also use this boundary condition G(Wp)y; ji .

if the voltage applied to the gap is much larger than the

excitation threshold.
Let us now formulate the boundary condition at the

cathode. The current to the cathode surface consists ofan inelastic collision.

two terms: the current of the emitted electra®éWy)y; J;
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We assume that the electric field (p) is not very
strong, so that after an electron reaches the excitation
threshold it does not gain much energy before it undergoes
In other words we assume that
[Wex 0fo(W)/dW |w,.| < fo(We). In this case for the



ESEC in high-pressure noble gas

frequency of inelastic collisions above the threshold we can 0.5 - . —
3 0, (W,.y)dy

. . . i 1
use the simple approximation — W(w)%w! s
vir(v) = v /OW w=w, (W — Weyr) o4t
= V(W) (W —Wor) W > W, (19) ¥i) . e
—a— Ar

where the prime means the energy derivative. Below the
threshold, of course,

—o—Neg
- He.; .;:

/

v;(v) =0 W < W,,. (20)

Substituting (6) and (10) into (19) we obtain faf(v) and
2=

v (v) = V:'/I(Wex)(WO +eEz — W,,) 0 0.2 0.4 0.6 0.8 1

=Wy !/ Wex
=v;(Wer)(z — 21)eE(z1). (21) w="%
Saving only the main term in the left-hand side of (12) (the Figure 1. Functions y(w) for all noble gases.
one containing the second derivative B{z)) and using
(21) we finally obtain forF(z) in the regionz > z; Table 1. Parameters determining differential effective
) secondary emission coefficient.
0°F 3v;, v/
22 =G — )= 5 eE@)F (22)
ex X=E/p oi(W) (10~*¢ cm?)
where we use? = 2W,,/m. Gas (VTorr™) « a b (o) (We) (W — Wey))
There are no inelastic collisions in the region< z; He 185 1.27 753 83 2.7(W — 20)
and (12) reads Ne 153 1.79 1.7 148 1.25W - 16)
d v3(z) d Ar 566 20 0.87 0.06 9(W —11.5)
FE );F =0. (23) Kr 787 1.44 0.80 0.0 25(W —11.3)
_ £ Ver{2) 02 N Xe 710 1.36 1.33 0.33 33(W — 10)
Solving (22) and (23) with boundary conditions (15), (18)
and continuity conditions forF(z) and its derivative at
z = z; and using expressions (13) we find the following _ )
expression for (Wo, E) (see the appendix): wherew = Wy/W,,, and X is the reduced magnitude of
j the electric field,
y(Wo, E) = — X=E/p. (28)
1
1/3 Here we denoted the characteristic electric field reduced to
— G(Wo)y; 1+3 Wo o1 (Wey) fF1T ag
= 0)YVi 4W,. \ o\ (Wor)eEny a pressure 0 orr aX:
z -1 ~ w,
+i/ v (2)dz (24) X=—"% = (W.,/e)o, (W) x 3.53x 101® (29)
4U() 0 (1 + €EZ/W0)3/2 extr(Wex)

derivation we assumed that the distance between electrodeg 53 x 1016 cm3) as i,,(W,,). The functiony (w) and

L is much larger tharg;. To obtain the result for the  gefficienta are

opposite casd, < z;, we can simply consider the anode as

a layer of completely absorbing particles,[W (L)] — c0) ) — §w /1 o1 (Wery) dy
placed at the distance from the cathode. Then, we return 4 J, o,(We)y

to the result of [7]: 1/3
. 3( Utr(We,v) )

L -1 o=
y = GWo)y, <1+ 4i %) - (29) A\ (Wer) Wex
voJo (L+eEz/Wo) Plots of the functiomy(w) for noble gases are given in
As in [7] from the integration over; in (24) we figure 1. With a high accuracy it can be presented in the
switch to the integration over the electron kinetic energy form
W, W = Wy + eEz. w(w)%aiw(l_w) (31)

(30)

3 WO Utr(Wex) 13 1+bw
y = G(Wo)y; <1+ 4w, <m> convenient for numerical simulations. The valuesbf
3N Wer g, (W) dl;?V _1 a, and coefficients:, b for all noble gases, together with
+ W, "7> . (26) approximations we use far;; (W) near the thresholds, are
4eE " Jw, w given in table 1.

One can rewrite the last expression in a more elegant form:  After integration of (27) oveWy, we find the resulting
1 ESEC as a function of electric field.

S 2 Winax
1+ wa(X/X)V3 + W(w)X/)§27) y(X) = /0 ¥ (Wo, X) dW. (32)

y(Wo, X) = G(Wo)y;
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Equations (26) (or (27)) and (32) represent the main result
of this paper.

For the quantitative example of utilizing expres-
sions (27) and (32) we consider two cases, which we name
(i) the He-like case, when the distribution of emitted elec-
trons is wide and most of them are emitted in the energy
range where the functiogr (w) also has a maximum and
changes very little over this energy range [9], and (ii) the

Xe-like case, when all emitted electrons are concentrated at

low energies, so that the maximum of their ener, ..,

is less than the energy at which the functigitw) has its
maximum [9]. Each of these conditions can be met in any
gas, but the first case is more typical for He and Ne, while
the second case is usually met in Ar, Kr and Xe.

In the first case we substitutg (w) by its average
value ¥ (W) = fo" " (w) G (W w) W, dw; in the
second case we substitute(w) by the linear function
Y(w) = wy’, wherey’ = ¥ (Wax)/Wmaex 1S the average
value of the derivative in the interval 04, .

In both cases we assume that the funct@®Wy) is
constant for the energies below the maximum enevgy,,,
and is zero above it. Using the normalization condition (16)
for G(Wp) we find thatG (Wp) = 1/ W,,ax, fOr Wo < W0y

() He-like case ¥ (w) = ¥ (wma). Integrating (27)
we obtain
X\ . X
(5 (14 v

x\? . X
+awmax (?) )/(l—"_ W(wma.\")})]-

For low electric fields one can neglect the unity compared
to other terms in the logarithmic term and we have

1

max

y(X) =y

(33)

_ 2/3
e 2 (el ()
awmax X X
2/3
~y i X [1— & Wmax <§> ] (34)
v X 2y \X

(i) Xe-like case ¥ (w) = wy’'. Integrating (27) from
0 to wy., We obtain

Yi

max

where

~ ~\ 1/3
X X
,meax = I//(‘wmux)i + AWpax (X) . (36)

For low field one can neglect the unity comparegBio, ..
in the logarithm term and we have

V(E/P)/vi = (1) Bomax) IN Bax
o X/ Y Wa)
Y(Wnax)  (X/X)

For high field, Bwmax
7O)/vi = 1= Bma /2.
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<« 1, expression (35) gives

1 L T T
Y(E/p)
Yi
0.1
[ ——&— He, Wmax=5eV
—&-— He, Wmax=10eV
—&— Ne, Wmax=5eV
—®— Ne, Wmax=10eV
0.01 * EE— wd
1 10 E/p 100

Figure 2. ESEC for 5 and 10 eV electrons ejected in He
and Ne.

1 .

e

e

¥(E/p)
Vi

—o— Ar, Wmax=0.3eV
—&— Ar, Wmax=1eV
& Ar, Wmax=2eV
—&— Kr, Wmax=0.3eV
- Kr, Wmax=1eV
- - Kr, Wmax=2eV
- Xe, Wmax=0.3eV
-4— Xe, Wmax=1eV
—%¥— Xe, Wmax=2eV

0.01 bt ]
1
1 10 Efp 00

Figure 3. ESEC for 0.3-2 eV electrons ejected in Ar, Kr
and Xe. The values of ESEC for Ar and Kr are virtually
indistinguishable.

Although the derivation of the ESEC is not valid in
the region of high electric field, the expressions (27), (33)
and (35) have qualitatively correct asymptotic behaviour,
so one can use them in all range of electric fields. The
plots ofy (E/p)/y; for different gases and different cathode
materials (any combination of gas—cathode material is
characterized by the values af,,,,) are presented in
figures 2 and 3.

4. Effective secondary emission coefficient for a
mixture of noble gases

In many applications the combination of a few noble gases,
typically two or three, rather than a single pure gas is used
as a working gas. In this case the ESEC defined as a ratio
of electron and ion currents at the cathode depends not only
on the electric field at the cathode and gas composition, but
also on the dynamics of the specific discharge. Indeed, by
definition

mix jk
Vi &

(G (38)

_ 1 i
J % x
where j, is a partial ion current related to &’‘gas

component, and/;"* is a partial ESEC for this current
component in the mixture. The partial ESBC™ depends
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only on the electric fieldZ/p and gas composition, but the 1 -
ratios ji/j are determined by the discharge in the whole ?/’M

gap and may even vary with time whéty p stays constant. HE/p)

Thus, it is more practical in this case to ugg™ instead % /

of y. o
In a general case of an arbitrary gas mixture the values ’ /

of "~ can be found only in numerical kinetic simulations,
such as direct Boltzmann or PIC-MC simulations. There
are, however, some cases when an expressionyfor
can be found analytically with relative ease. We consider 0.01 F
here two cases, both for two-component mixtures, which
are often used in practical applications. In the first case
the component with the lowest excitation threshold has : :
such a small partial pressure that one can neglect electron o, L oiii o il o e
collisions with its atoms. The ionization mechanism for 01 1 10 Elp 100 1000
this component is mainly due to Penning ionization by *
excited atoms of main component. In the second case theFigure 4. Partial ESECs in the gas mixture of 90%
partial pressure of the component with the lowest excitation He + 10% Xe and in pure Xe.
threshold is large enough that the electron distribution
function drops significantly in the region close to the
excitation threshold of this component. This kind of
mixture is often used in light emitting devices, like plasma differential ESEC similar to (27)
displays or in new xenon based lamps. :

We assume that in both cases the spectrum of secondany’xs 1e(Wo, Xmix) = G xe.ne(Wo)y;* "¢
electrons related to the component with low excitation To\Y3
threshold is narrow and the spectrum of secondary electrons X [1 + Wiy <ﬂ> + Yix (W)
related to the component with high excitation threshold is Xomix
wide. This means that one ¢f"* will behave as Xe-like,
the Other as He-I!ke. qu convenience, in the following ondary emission coefficients for appropriate ions, =
description we will consider helium as a high-pressure Wo/ Wer Xmix = E/
component and xenon as an admixture in both cases. One™ %/ " X¢» “mix PXer
can easily change notations He to Ne, and Xe to Ar or Kr . _ Wyo Nijo
in final expressions. Xonix = Xxe + —— X He (40)

WHe NXe

—&— He(mix), Wmax=10eV

~—o— Xe{mix), Wmax=0.3eV

—8— Xe, Wmax=0.3eV

Xmi)c
Xmix

]_1 (39)

where Gy, u.(Wo)y, "¢ are differential vacuum sec-

In the first caseXe admixture does not affect electron )
scattering, thug/”* will be the same as in pure helium, @nd @uix and Y. (w) can be expressed in terms of
while yi* will be determined by a narrow spectrum of individual functions as
secondary electrons (related to the action of Xe ions) and o1 (Wy )N 1/3
by electron scattering on He atoms. This means that onew,,;, = ax. (1-1- w>
can use expressions (35)—(37) fgf.*, but use functions 0ir“(Wxe)Nxe
Xte, Yre(Wmay) anday, related to He and as,,,, use i (Wye) \ 2
the ratio of maximum energy of emitted electrons (due to = Oxe <W>

the action of xenon ions)WX¢ | to the excitation energy Ye
25 (Wxe)

max?
H (Wxe)

(41)

He
of He atoms WX¢): w,,q, = WXe /Whe. Vi (W) = Zir Wae) Whe
2:tnﬁm(vae) WXe

max

WXe(w) +

In the second caséhe xenon pressure is high enough w w
so that beyond the xenon excitation threshold distribution X [\/,He (w Xe) — W, ( Xf)] ) (42)
function drops fast and one can neglect inelastic processes Whe Whe
between electrons and helium atoms. The only procesSygre we introduced individual macroscopic transport cross-
tha.t helium atom; contrlpute in thls case (even at high o tions for each component:
helium pressure) is elastic scattering of electrons. Thus,

this mixture can be represented as a modified Xe gas xXeHe _ N g XeHe
density Ny,, with atomic elastic cross-section, = o,X* + " e
(Nu./Nx.)o¢, and inelastic cross-sectios; = affe.

After integrating (39) over the spectrum of secondary
electrons for each gas component we obtain (33) and (34)
for ypix and (35) and (36) foryi*. For the illustration
in figure 4 we present plots of thgy* and y;7* in the
mixture of 90% He and 10% Xe described by the formulae

Now one can repeat a consideration similar to the one (33)—(36) and (40)—(42) and the plot of the ESEC in pure
made in the previous section and obtain an expression forXe with the same energy spectra of emitted electrons.

Sometimes it is more convenient to consider this gas as
a surrogate gas density = Ny, + Nx., and macroscopic
cross-sections;, = No, = Nx.0X¢ + Ng.of¢ and

¥y = Noiy = Nx.0.°.
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5. Summary 1

We have investigated the influence of the electric field on  7&/p)
the effective secondary electron emission coefficient ina %
high-density noble gas. This effect was first explained
qualitatively ty J J Thomson ah L B Loeb as a result

of joint action of the secondary emission of electrons from

the surface, back-reflection of these electrons by the gas
atoms and their extraction from the cathode vicinity by the
electric field. They assumed that all of these processes
were independent of the processes in the bulk of the
discharge.

Later, the present authors [7] showed analytically that
in most cases the whole concept of the ESEC (or the second
Townsend coefficient) as a property of the surface—-gas
interaction, determined in the close vicinity of the surface .
and independent of the discharge in the bulk, should be s ot :
reconsidered. For example, in some cases the processes in ! I 100
the F:athode vicinity and in the bulk of Fhe gas dI_SCharge are Figure 5. ESEC in Ar. Comparison with experiment. The
SO tightly mterwoven that the .ESEC is determlneo! by the yotted line is the plot of (43) with pi., = 1/37 and
discharge in the whole gap. Since electron dynamics plays w,,, = 1.5 eV, as well as with pr.1/49 and
such an important role in establishing the ESEC, one should W e = 0.8 eV.
expect that its value will be different in the stationary and
non-stationary cases.

In this paper we have shown that if the voltage applied . )
to a gap is significantly higher than the excitation/ionization '0W E/p one cannot neglect the energy losses in elastic
potential of the gas atoms, then the size of the region in collisions. At higherE/p our theory is in good agreement
which processes affect ESEC is much smaller than the gapwnh the fit of experimental data of Felsch and Pech [5, 6],

—— Theobald, Wmax=0.2eV

—¥— Theory, Wmax=0.2eV

—=o&— Theobald, Wmax=0.6eV

" e Molnar (Wmax=1eV)[12]

—&— Theory, Wmax=0.6eV

—&— Felsch and Pech, (exp.) Wmax=1.5eV
—— Theory, Wmax=0.8eV

---©--- Felsch and Pech (formula), Wmax=0.8¢V |

0.1 7

length (but much larger than electron mean free path). ~ Which they suggested:
In order to obtain some quantitative results, we limited N—2/3
our consideration to the case of a high-density noble gas vrp(E/p)/yi = (1+0.0948n) (43)

and stationary, uniform and weak electric fielE¢, <

Wop). The general case of arbitrary field strength requires
numerical consideration. A specifics of noble gases, which
was essential to our consideration, is that the width of the

energy spectrum (maX|m_um energy) of secqnd_ary electronsfor Ar instead of 1/49 i, (Wey) = Wa /X — 1/49),
emitted from the surface is less than the excitation threshold . ; . S
We believe that this can be explained by the peculiarities

of the gas atoms. Then, when an electron experiences .
) . N .~of the energy spectrum of the photoelectrons, which has
inelastic collision its energy changes so much that it . . . .
. . o - a relatively long tail, which does not contribute to the
immediately leaves the initial energy range and is not . . .
. ESEC, so thakeffective maximum energg closer to the

able to return to the cathode surface. In contrast, in .

L . . _average energy of the photoelectrons rather than to their
many molecular gases the excitation threshold is determined . . .

maximum energy. Comparison with data of Molnar [11]

by the molecular rotational and vibrational terms and is o .
. supports the same conclusions: our formula gives good
often much less than the width of the energy spectrum of . . .

S - agreement with experiment if we use the average energy
the secondary electrons, which is still determined by the of the photoelectrons instead of their maximum energy for
ionization potential of an atom or a molecule. P . gy

the value of theW,,,, in our model spectrunof secondary

The expressions (27) and (31) for the differential and . h
. electrons (see figure 5). As we noted at the end of section 3,
total ESEC (and (32) or (34)), are applicable not only high E/p (such thateEx,. > W,,.,) our theory is not

for the case when the electron emission is caused by the " . ! oo

action of ions, but also for any other source (photons valid, but, as one can see from figure 5, the error it gives
) ’ 0,

metastables, etc), which can be characteristized by the yieIddoes not exceeq 10 /°: . .

5, (instead ofy;) and the spectrunG,(Wo) (instead of As we mentioned in introduction we assumed that the

CL?(Wo)) of the lsecondaries The]ﬂ(Ee/p Eyas)/vi and electric field changes slowly enough and its gradient is

S(E/p, Wnax) /8. are the same if the spect@(Wy) and smagl'.t. Using thﬁ[ igur;d ?Iut|on we can fformtﬂate tlhf.se
G.(Wo) are identical. conditions gquantitatively. As one can see from the solution

For comparison we plot in figure 5 experimental data for the function F'(z) (see (A1), the size of the region

[4-6,11] of the ESEC for the low-energy (below 1.5 eV) which determines the ESEC can be estimated as
photo-electrons emitted in argon and the result obtained W ( V2 >1/3

where ' = K(e/Wmax)z/s(p)\e)s/z(E/p)v and K =

1 V=13 (Torr cmy %2, However, in order to use in this
expression thenaximum energy of photoelectrotiey used
a value of the parametep), higher than we do: 1/37

with (34). At very low E/p our theory differs significantly Ly ~ Zimax + P W
form the experimental data [4], probably because at such Vi Vig (Wex)e

eE
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It takes a time of about

T, ~ £, /vg

for an electron to drift across this region. One may consider

that the electric field changes slowly in time and space if

1, |0E /01| < E ¢,|VE| < E.
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Appendix

Let us denote « [(Bv, v, /v2)eE(z)]Y3,  then
equation (22) forz > z; takes the form

82

_ .3
T%QF—K%‘F

(A1)
whereé = z — z;. This is an Airy equation, and its
solution, which has an asymptote that goes to zétoxq(
(&)~ exp[-(2/3)(k€)%?)) is

F(z>z) = aAi(kE) = %WS/sKl/g(%(xs)W) (A2)

where Ai(x) is the Airy function andky3 is the modified
Bessel function of the order 1/3.

In the regionz < z; (or & < 0) using (23) we obtain
for F(z)

F(z <2) = F(z)) <1+ c/" g dz). (A3)

At the point z = z; both function F(z) and its first
derivative must be continuous functionszofApplying this
conditions to (A2) and (A3) we obtain unknown constants
a andC:

a = F(z;)/Ai(0) ~ 2.8F(z;) (A4)
A0 kv kvl (A5)

A v () v (V)
where Ai(0) and Ai(0) are the values of the Airy function

and its derivative at the zeroth argument. Using (13) and [11]

ESEC in high-pressure noble gas

the condition that the electron current is constant between
the cathodez = 0) and the point = z;, we obtain

ZneCF( )
3 v, 00 3

ne = 27vF(2) (1+ c/" s dz).
o UV

Substituting these expressions into the boundary condition
(18) and using the first of equations (13) we can write

2we v3 OF _

Je(z =zp) =

(A6)

. 2re .
Je = _TCF(ZI) = G(Wo)viJi

v5 o vy
+2re—F(z)) |1+ C —dz ).
4 0 U3

Solving the last of this series of equations with respect to
F(z;) we find j,:

(A7)

1

dz>_ . (A8)

3v2 3 Ay
o= jiGWo)y (1+ 52 —2/ -
Je=1J (o))’<+4c+4voo 03

Comparing this equation with the definitionpfy = j./ji,
we find the expression for (Wo, E/p):
-1
dz)

(Wo. E/p) = G(Wo) 1+3v3+32/z,v,,
y 0> p - 0)’[ 4C 4U0 o U3

Otr

3 vcz, 3
=G W fi 1 -\
(ol [ " 4v2, (Ui/leE)‘tr>
(A9)
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